
The network security of client-server
iPhone applications

Dennis Cortjens
dennis.cortjens@os3.nl

Iwan Hoogendoorn
iwan.hoogendoorn@os3.nl

Abstract

A lot of public places are offering free Wi-Fi networks. These Wi-Fi networks are often not very secure and
configured with no or minimal security. Sniffing traffic on these networks is fairly easy. SSL/TLS connection
are used by banks for online banking, but also by Facebook, Google and other companies to protect your
private data. However, attacks on these secure connection have been succesful and are a serious thread,
especially on free Wi-Fi networks. This research performed a SSL decrypt, SSL strip and SSL proxy attack
on six populair iOS applications (ABN AMRO Mobiel Bankieren, PayPal, Apple App Store, Apple Facetime,
Dropbox and Facebook) and provides prevention measures against the attacks, although the applications
weren’t vulnerable for the attacks. This research also defined a simple security level system for applications
using secure connections.

Contents

1 Introduction 1
1.1 Problem . 1
1.2 Scope . 1

2 Background 2
2.1 Secure Sockets Layer (SSL) . 2

2.1.1 History . 2
2.1.2 Workings . 2

2.1.2.1 Server-side Certificate Authentication . 2
2.1.2.2 Mutual Certificate Authentication . 3

2.2 SSL Attacks . 4
2.2.1 SSL Decrypt . 5
2.2.2 SSL Strip . 5
2.2.3 SSL Proxy . 6

2.3 Previous research . 7

3 Preparation 9
3.1 Security Levels . 9
3.2 Test Environment . 10

3.2.1 SSL Decrypt / Strip . 10
3.2.2 SSL Proxy . 10

3.3 Test Specification . 10

CONTENTS 2

4 Testing and Analysing 12
4.1 SSL Decrypt . 12
4.2 SSL Strip . 13
4.3 SSL Proxy . 15

5 Conclusion 18
5.1 General . 18
5.2 SSL Decrypt . 19

5.2.1 Prevention . 19
5.3 SSL Strip . 19

5.3.1 Prevention . 20
5.4 SSL Proxy . 20

5.4.1 Prevention . 20
5.5 Achievements . 21
5.6 Future research . 21

1 Introduction 1

1 Introduction

The success of Apple’s App Store is remarkable and still growing. Apple launched the App Store on the 11th
of July, 2008 with about 500 applications. Almost four years later, with the App Store offering over 500.000
applications in categories like entertainment, education, games, lifestyle, social media and much more, Apple
has created a new market for iPad, iPhone and iPod (iOS) owners and developers. [1]

1.1 Problem

The growth of the App Store with applications containing private data, such as online banking and cloud
services, has made security on iOS devices a top issue. A lot of companies like Binck (investment), PayPal
(online paying), ABN AMRO and ING (online banking) offer applications that make life easier by checking
your investment, checking your balance and transferring money where ever you are with your iOS device.
Other applications like Dropbox (cloud storage), Facebook (social media) and Facetime (video calling) also
bring some other services to your iOS device. But are the companies that provide these applications securing
your data in a good way?

A lot of public places are offering free Wi-Fi networks. Whether you’re on the train or at the McDon-
alds, they offer free Wi-Fi. These Wi-Fi networks are often not very secure and configured with no or minimal
security. Sniffing traffic on these networks is fairly easy. Using applications like the ones mentioned earlier on
public networks could become a high security risk, if the application doesn’t have the right level of security.

SSL/TLS connections are used by banks for online banking, but also by Facebook, Google and other compa-
nies to protect your private data. However, attacks on these secure connections have been successful and are
a serious thread, especially on free Wi-Fi networks.

1.2 Scope

The main research question in this study is:

What are good ways to secure an iOS application on the network and how is the network security currently
in some popular iOS apps?

This question is researched with the following sub questions:

1. Which SSL attacks can be used to attack iOS applications?
2. How do these SSL attacks work?
3. How can these SSL attacks be performed?
4. What are the popular applications in the App Store?
5. What is the security level of these applications?
6. Is the security level in relation with the content the application offers?

This research will focus on the network security of iOS applications. A selection will be made of the most
popular applications in the App Store, including at least two online banking applications.

2 Background 2

2 Background

2.1 Secure Sockets Layer (SSL)

Secure Sockets Layer (SSL), as its successor Transport Layer Security (TLS), is a cryptographic protocol that
provides secure communication over the internet. SSL and TLS encrypt the traffic segments at the transport
layer of the Open Systems Interconnection (OSI) model. Both use asymmetric cryptography for the key
exchange and symmetric cryptography for the actual data communication.

SSL and TLS ensure three important aspects of client/server communication:

Authentication Confirming the identity of the server (and client) to make sure those can be trusted.
Encryption Transforming the communication between the client and server to unreadable data, except for

those the data is intended for.
Integrity Confirming the consistency of the data to make sure it isn’t altered on the way.

2.1.1 History

The SSL protocol was originally developed by Netscape. SSL version 1.0 was never publicly released. SSL
version 2.0 was publicly released in 1995, but because of a number of security flaws it was successed by SSL
version 3.0 in 1996. SSL 3.0 was a complete redesign of the protocol by P. Kocher, P. Karlton and A. Freier
(Netscape). The draft of version 3.0 was later published by the IETF as a historic document in RFC 6101 [2].

Its successor, the TLS protocol, was developed by T. Dierks and C. Allen (Certicom) in 1999. TLS ver-
sion 1.0 was an upgrade to SSL 3.0, but according to its RFC 2246 [3]:
...the differences between this protocol and SSL 3.0 are not dramatic, but they are significant enough that
TLS 1.0 and SSL 3.0 do not interoperate...
However, TLS 1.0 does include a mechanism to downgrade a connection to SSL. This eventually became a
security flaw and was fixed in TLS 1.2. Another security flaw in TLS 1.0 was the Browser Exploit Against
SSL/TLS (BEAST) attack, mentioned in section 2.2. TLS version 1.1 was released in 2006 and included
fixes for Cipher Block Chaining (CBC) attacks, as well as some notes about new attacks against TLS. It was
published by the IETF in RFC 4346 [4]. TLS version 1.2 was released in 2008 and included new Secure Hash
Algorithm hashed and the Advanced Encryption Standard (AES) cipher suite. It was published by the IETF
in RFC 5246 [5] and was refined in 2011 with RFC 6176 [6], which prohibited to downgrading to SSL 2.0.

2.1.2 Workings

SSL and TLS both work in the same way. There are two types of connections: server-side and mutual
certificate authentication.

2.1.2.1 Server-side Certificate Authentication

The server-side certificate authentication process consists of the following steps:

1. client sends a hello message with its SSL version, cipher settings and other session specific data to the
server

2. server sends a hello message with its SSL version, cipher settings, other session specific data and server
certificate to the client

3. client authenticates the server certificate through the Certificate Authority (CA) chain
4. client generates the pre-master secret
5. client encrypts the pre-master secret with the server’s public key from the server certificate and sends

it to the server
6. server decrypts the pre-master secret with the server’s private key
7. client and server generate the master secret and use it to generate session keys
8. client sends message that its future messages will be encrypted with the session key to the server
9. client sends message that the client’s portion of the handshake is finished to the server

2.1 Secure Sockets Layer (SSL) 3

10. server sends message that its future messages will be encrypted with the session key to the client
11. server sends message that the server’s portion of the handshake is finished to the client
12. client and server send (encrypted) data messages to each other and use the session key to encrypt and

decrypt the data

This process is illustrated in figure 1.

Figure 1: SSL Server-side Certificate Authentication

2.1.2.2 Mutual Certificate Authentication

The mutual certificate authentication process consists of the following steps:

1. client sends a hello message with its SSL version, cipher settings and other session specific data to the
server

2. server sends a hello message with its SSL version, cipher settings, other session specific data and server
certificate to the client

3. client authenticates the server certificate through the Certificate Authority (CA) chain
4. client generates the pre-master secret
5. client encrypts the pre-master secret with the server’s public key from the server certificate
6. client signs the encrypted pre-master message and sends it with the client certificate to the server
7. server authenticates the client certificate through the Certificate Authority (CA) chain
8. server decrypts the pre-master secret with the server’s private key

2.2 SSL Attacks 4

9. client and server generate the master secret and use it to generate session keys
10. client sends message that its future messages will be encrypted with the session key to the server
11. client sends message that the client’s portion of the handshake is finished to the server
12. server sends message that its future messages will be encrypted with the session key to the client
13. server sends message that the server’s portion of the handshake is finished to the client
14. client and server send (encrypted) data messages to each other and use the session key to encrypt and

decrypt the data

This process is illustrated in figure 2.

Figure 2: SSL Mutual Certificate Authentication

[7]

2.2 SSL Attacks

As mentioned in section 2.1.1 there are some security flaws in SSL and TLS, but most of them are fixed in
the latest version of TLS (1.2). However, some developers still implement old versions of SSL and TLS in
their applications and/or TLS in the wrong way. This makes attacks on SSL and TLS possible.

2.2 SSL Attacks 5

One of the most famous SSL attacks is the BEAST attack. It was discovered by Juliano Rizzo and Thai
Duong in 2011. They presented the attack at the Ekoparty security conference in Buenos Aires, Argentina.
The attack was based on an older exploit not using a random Initialization Vector (IV) in CBC mode for
every TLS message, discovered by Wei Dai and Gregory Bard. Rizzo and Duong found a way to make this
attack work against web browsers by generating cookies. A lot of web browser developers fixed the BEAST
attack vulnerability within their TLS 1.0 implementation. Although it was fixed in TLS 1.1, this version of
the protocol wasn’t widely implemented yet. [8]

There are other SSL attacks better known as:

• SSL Decrypt
• SSL Strip
• SSL Proxy (with Self-signed Certificate)

2.2.1 SSL Decrypt

It is possible to decrypt SSL traffic with Wireshark [9] and Wireshark’s SSL Dissector function. However, this
can’t be done on live network traffic. The decryption can only take place on captured SSL traffic using RSA
key exchange. The data within the SSL traffic is only readable later on. This could be enough to find useful
information, like usernames and passwords. Capturing SSL traffic can be done by creating a SPAN/monitor
port on a switch or by a man-in-the-middle attack.
The following steps describe SSL decryption with Wireshark:

1. capture SSL traffic and save it as a .pcap file
2. open the Wireshark preferences by going to Edit > Preferences... or by pressing Shift + Ctrl + P
3. open the SSL preferences by going to Protocols > SSL
4. obtain the RSA private key from the server in a .key or .pem file
5. insert the Pre-Shared-Key in the field using the sequence <ip>,<protocol>,<path-to-file>,<optional:password>
6. click Apply and OK

[10] [11]

2.2.2 SSL Strip

It is also possible to strip SSL traffic with a man-in-the middle attack using arpspoof [13] and sslstrip [17].
With arpspoof the victim’s computer is spoofed to send all traffic to the attacker’s computer. When the victim
is using a SSL connection, sslstrip creates a secure connection (HTTPS) between the attacker’s computer and
the server. On the other side sslstrip creates an insecure connection (HTTP) between the attacker’s computer
and the victim’s computer. The server isn’t aware of this intervention, because a server-side authentication
only requires the server to be authenticated. The server doesn’t know the real identity of the client. So
this could be every (spoofed) computer. Because of the insecure connection between the attacker and the
victim, usefull information is send in plain back and forth from the victim’s computers. So the attacker is
able to read the data. The victim is able to detect such an attack. Normally, when using a secure connection
in a web browser the victim will see ’https://’ and a green field with the website’s certificate. But because
the connection between the attacker and victim is HTTP and insecure, it will be showed as ’http://’ and
without the website’s certificate. However, not many people check the connection before navigating to a
secure website.

This is illustrated in figure 3.

2.2 SSL Attacks 6

Figure 3: SSL Strip attack

The following steps describe a SSL strip attack with BackTrack 5 R2:

1. open Terminal
2. enable IPv4 forwarding by using the

echo 1 > /proc/sys/net/ipv4/ip forward command
3. redirect HTTP (port 80) traffic to another port (10000) by using the

iptables -t nat -A PREROUTING -p tcp –destination-port 80 -j REDIRECT –to-port 10000 command
4. open another Terminal
5. run arpspoof on the network interface and the victim’s IP address by using the

arpspoof -i eth0 -t <victim-ip> <gateway> command
6. run sslstrip by going to BackTrack > Exploitation Tools > Web Exploitation Tools > sslstrip
7. run sslstrip to log all traffic to and from the server by using the

python sslstrip.py -a command
8. open another Terminal
9. run ettercap to quietly output text from the network interface by using the

ettercap -T -q -i eth0 command
10. wait for the victim to login

[14] [15] [16]

2.2.3 SSL Proxy

The SSL proxy creates an invisible/transparent proxy for SSL traffic on (a part of) the network and makes
sure all network traffic is send through that proxy. In most cases this will be the attacker’s computer. A
self-signed certificate will make sure the connection to the attacker’s computer is also secured, creating a
’secure’ connection from client to server. In this case the victim isn’t able to detect such an attack by looking
for ’http://’ and the website’s certificate, because the connection at both sides of the attacker is secured.
However, this attack should give the user a certificate warning, because the certificate between the attacker’s
computer and victim’s computer is self-signed and not trusted. Unfortunately, not many people check this
warning and just click continue to navigate further. This attack is possible by using dnsspoof [13] and Burp
Suite [18].

This is illustrated in figure 4.

2.3 Previous research 7

Figure 4: SSL Proxy attack

The following steps describe a SSL proxy with self-signed certificate attack with BackTrack 5 R2:

1. open Terminal
2. run dnsspoof on the network interface by using the

dnsspoof -i mitm command
3. go to the Burp Suite folder by using the

cd /pentest/web/burpsuite/ command
4. run Burp Suite to start the proxy server by using the

java -jar -Xmx2g burpsuite v1.4.01.jar & command
5. open the proxy options by going to proxy > options
6. add HTTP port 80 traffic with support invisible proxying for non-proxy-aware clients by entering/se-

lecting the data and clicking add
7. add HTTPS port 443 traffic with support invisible proxying for non-proxy-aware clients and use a

self-signed certificate by entering/selecting the data and clicking add
8. open the intercept console by going to proxy > intercept
9. disable interception to stop the need for confirming every packet by clicking intercept is on

10. wait for the victim to use SSL secured websites

[19] [20]

2.3 Previous research

A lot of research has been done on the security of the iPhone itself. This research generally focuses on the
security of the hardware and operating system. And not on the security of a specific application or the security
of an application from a network perspective. SSL attacks has been researched more often and also on an
academic level. A lot of practical tutorials on performing these attacks can be found on ethical hacking blogs
and YouTube. A combination of these fields has been done, but not on an academic level.

In 2002 Peter Burkholder researched man-in-the-middle attacks on SSL. He described a SSL strip like at-
tack with arpspoof and dnsspoof on secure web browser traffic. [21] Although this isn’t exactly like the SSL
strip attack performed in this research, this paper helped in understanding the workings of man-in-the-middle
attacks with arpspoof and dnsspoof on SSL connections.
In 2004 Kristof Boeynaems extensively researched this subject too. He described an in depth background of
SSL and possible/impossible attacks on the SSL protocol, including timing and man-in-the-middle attacks.
[22] Although this is a theoretical research, this in depth paper helped in understanding the workings of the
SSL protocol and the possible/impossible attacks on SSL connections.
In both the SSL protocols up to TLS 1.0 are described.

2.3 Previous research 8

In 2003 some research was done with timing attacks on SSL. Brice Canvel, Alain Hiltgen, Serge Vaudenay
and Martin Vuagnoux researched the weakly implemented CBC mode [23]. David Brumley and Dan Boneh
researched the unprotected OpenSSL implementations [24].
In 2005 this last research was improved by Onur Aciicmez, Werner Schindler and Cetin Koc. They improved
the efficiency of the attack by a factor of more than 10. [25]
Although this isn’t useful for our research, timing attacks are a possible attack on SSL.

These findings are somewhat outdated, but they are a good basis and reference for this research.

3 Preparation 9

3 Preparation

3.1 Security Levels

There isn’t a standardized system that defines the security levels of applications based upon the data they
process or store. Such a system would give application developers a guideline in the level of security they need
for their application. With hundreds of programming languages and thousands of developers in the world, it
is hard to create such a system. Not all programming languages provide the same security features and not
all developers will have their own best practices for security. This research tries to define a simple security
level system for applications which are based on the data they process or stores and the most common and
well-known SSL ciphers.
This report defines the following security levels:

Highest An application that uses a TLS 1.x connection with an AES cipher. The AES cipher is considered
to be sufficient to protect classified information up to secret (AES 128-bit and up) and even top secret
(AES 192-bit and up) [26]. So this should be sufficient to protect applications that provide online
banking.

High An application that uses a TLS 1.x connection with a 3DES cipher. The 3DES cipher is considered a
weaker cipher, because of a lesser maximum block length of 168-bit (3x DES 56-bit) and an efficiency
loss, against AES [27]. However, this should provide sufficient security for payment transactions, like
an online store.

Medium An application that uses a TLS 1.x connection with a RC4 cipher. The RC4 cipher is considered
a safe cipher, but there are some implementation that have proven to be weak and crackable [28].
It should be sufficient to protect private data, like documents. But is insufficient for any payment
transactions or online banking.

Weak An application that uses a TLS 1.x connection with a DES cipher. The DES cipher is considered an
insecure cipher, because the maximum block length of 56-bits is easily crackable [29]. There even is
special hardware available to crack DES encrypted data. It should not be used and must be replaced
by 3DES or AES.

Weakest An application that uses a SSL x.0 connection. As mentioned in section 2.1 the old SSL versions
contain security flaws and are considered insecure. They should not be used anymore and must be
replaced by TLS.

None An application that uses no secure connection at all.

These security levels are schematically shown in figure 5.

Figure 5: Security levels

3.2 Test Environment 10

3.2 Test Environment

The test environment for this research was set up with different hardware and software components.

Hardware:

Apple iPhone 4 The Apple iPhone 4 smartphone is the victim.
Notebook The notebook computer is the attacker.
Switch The switch with SPAN/monitor port is the core component for connecting the wired devices.
Wireless Access Point The wireless access point is the core component for connecting the wireless devices.

Software

arpspoof A command line application to send spoofed Address Resolution Protocol (ARP) messages onto
the network to associate the attacker’s MAC address with another IP address on the network [13].

BackTrack A custom Ubuntu distribution, available as boot CD, installation and virtual machine, with a
large collection of security-related tools for penetration testing purposes [30].

Burp Suite A collection of different security-related tools, like a proxy server and web spider, for penetration
testing purposes [18].

dnsspoof A command line application to send spoofed Domain Name System (DNS) messages onto the
network to reroute traffic to the attacker’s IP address [13].

iptables A Linux kernel firewall.
sslstrip A command line application to strip the secure part of a connection and capture usernames and

passwords on the network [17].
Wireshark A tool to capture and browse network traffic and to analyse network protocols [9].

The SSL attacks require different environments. Therefore we build two environments. One for the SSL
decrypt and strip attacks and one for the SSL proxy attack.

3.2.1 SSL Decrypt / Strip

The environment for the SSL decrypt and strip attacks consists of a switch with a port connected to the
internet by the Dynamic Host Configuration Protocol (DHCP). A port set as SPAN/monitor connected to the
attacker’s notebook computer and a port connected to the wireless access point. This wireless access point
is the gateway to the network for the Apple iPhone 4 which is the victim. This is schematically shown earlier
in figure 3.

3.2.2 SSL Proxy

The environment for the SSL proxy attack consists of the attacker’s notebook computer with a wired and
wireless network interface card. The wired side is connected to the internet by DHCP. The wired and wireless
interfaces are bridged, so the wireless side can use the internet connection of the wired side, also by DHCP.
The wireless side is configured in master/access point mode to act as an access point for the Apple iPhone
4 which is again the victim. This is schematically shown earlier in figure 4.

3.3 Test Specification

The client-server applications chosen for this research are two online banking applications and four other
popular applications.

Online banking applications:

ABN AMRO Mobiel Bankieren The online banking application of one of biggest banks in the Netherlands.
PayPal The mobile application of the world’s biggest online money transfer service.

3.3 Test Specification 11

Other applications:

Apple App Store The application for installing new application on a iOS device.
Apple FaceTime The mobile application for Apple’s video calling service.
Dropbox The mobile application of Dropbox’s cloud storage service.
Facebook The mobile application of the world’s biggest social media service.

4 Testing and Analysing 12

4 Testing and Analysing

4.1 SSL Decrypt

For the SSL decrypt attack step 1 as described in section 2.2.1 was used for each application. Before each
test, all applications on the Apple iPhone 4 were closed to make sure there is no other traffic within the
capture. The RSA private key could be obtained by creating a physical image of the iPhone with the UFED
Physical Analyser forensic software. And then browse or carve this image for the possible key. This is a study
in itself and couldn’t be performed, because of the limited time for this research. To analyse the findings the
.pcap file was opened with Wireshark and the most common IP address in the capture was checked to belong
to the company of the application by querying the RIPE and ARIN databases. Then a filter was placed on the
victim’s IP address and the checked IP address. In that way the traffic back and forth from the application
was distinguished. In a case of multiple IP addresses for the connection, the filter was extended with those IP
addresses. This attack resulted in some interesting information about the SSL connection in the applications.

ABN AMRO Mobiel Bankieren The ABN AMRO Mobiel Bankieren application showed a TLS version 1.0
connection with a TLS RSA WITH AES 256 CBC SHA cipher suite. This connection is used for both
authentication and data transmission. Although they do not use the latest version of TLS, they did
add the AES cipher suite (RFC3268 [31]) which is officially added in TLS 1.2. The AES cipher suite
increases the efficiency and security. This increase is provided by the way AES is build (effenciency) and
is provided by bigger block lengths of 192-bit and 256-bit (security). An attack with the known RSA
private key should succeed, because of the use of RSA key exchange. Another interesting discovery is
that ABN AMRO has registered its IP addresses with ARIN (America) and not RIPE (Europe).

Paypal The PayPal application showed a TLS version 1.2 connection with a
TLS RSA WITH 3DES EDE CBC SHA cipher suite. This connection is used for both authentication
and data transmission. Although they use the latest version of TLS, they do not use the AES cipher
suite. Triple Data Encryption Standard (3DES) has a maximum block length of 168-bit (3x DES 56-bit),
were AES has block lengths of 192-bit and 256-bit. An attack with the known RSA private key should
succeed.

Apple App Store The Apple App Store application showed a TLS version 1.0 connection with a
TLS RSA WITH RC4 128 MD5 cipher suite. This connection is used only for authentication. Rivest
Cipher 4 (RC4) has known weaknesses that argue against it in using it in new systems, especially when
it’s weakly implemented [28]. This could make the Apple App Store a security risk, especially when using
it for authenticating banking information for paid applications. An interesting discovery with the data
transmission is that they use a balancing service for downloading applications and that this connection
isn’t secured. The balancing service is provided by Akamai Technologies [32] and was discovered by
a third party IP address in the captured traffic. An attack with the known RSA private key should
succeed.

Apple FaceTime The Apple FaceTime application showed a TLS version 1.0 connection with a
TLS RSA WITH RC4 128 MD5 cipher suite. This connection is again used only for authentication.
Apple apparently uses this for all their iOS applications. So it comes with the same possible security
risks as the Apple App Store. However, Apple FaceTime isn’t using your banking information and so
the risk is lower. The data transmission part was a connection over the User Datagram Protocol (UDP)
with the Session Initiation Protocol (SIP) which is used for multimedia communication, including Voice
over IP (VoIP). Although it is be possible to use SSL over UDP [7], this would be very unreliable. UDP
has no guarantee of packets arriving and therefore encrypted data would not be decipherable. An attack
with the known RSA private key should succeed.

Dropbox The Dropbox application showed a TLS version 1.0 connection with a
TLS RSA WITH RC4 128 MD5 cipher suite. This connection is used for both authentication and
data transmission. The cipher suite is the same as with Apple, but Dropbox isn’t using your banking
information and so the security risk is lower. An attack with the known RSA private key should succeed.

Facebook The Facebook application showed a TLS version 1.2 connection with a
TLS RSA WITH RC4 128 SHA cipher suite. This connection is used for both authentication and data

4.2 SSL Strip 13

transmission. Again, the cipher suite is the same as with Apple. Although they use the latest version
of TLS, they do not use the AES cipher suite which would increases the efficiency and security of the
cipher, especially pertaining to RC4. Facebook isn’t using your banking information in the application
and so the security risk is lower. An attack with the known RSA private key should succeed.

The information is summarized per application in table 1.

Application SSL Cipher suite Authentication Data
ABN AMRO TLSv1 TLS RSA WITH AES 256 CBC SHA X X
PayPal TLSv1.2 TLS RSA WITH 3DES EDE CBC SHA X X
Apple App Store TLSv1 TLS RSA WITH RC4 128 MD5 X -
Apple FaceTime TLSv1 TLS RSA WITH RC4 128 MD5 X -
Dropbox TLSv1 TLS RSA WITH RC4 128 MD5 X X
Facebook TLSv1.2 TLS RSA WITH RC4 128 SHA X X

Table 1: SSL connection information per application

4.2 SSL Strip

For the SSL strip attack the steps as described in section 2.2.2 were used for each application. Wireshark was
ran simultaneously to see what happened on the network and the captures from each application were saved.
Before each test, all applications on the Apple iPhone 4 were closed to make sure there is no accidental hit
from other traffic. To make sure the attack should work, a browser login was made after each application. To
analyse the findings the .pcap file was used and the IP address checking and filtering was done as mentioned
in section 4.1.

ABN AMRO Mobiel Bankieren The ABN AMRO Mobiel Bankieren application didn’t show any login in-
formation with sslstrip. Instead it showed an error message saying ’No connection Unable to establish
a connection. Check your Internet connection.’ as showed in figure 6. The attack was unsuccessful on
this application.

PayPal The PayPal application didn’t show any login information with sslstrip. Instead it showed an error
message saying ’Error System error. Please try again later.’ as showed in figure 7. The attack was
unsuccessful.

Apple App Store The Paypal application didn’t show any login information with sslstrip. Instead it showed
an error message saying ’Cannot connect to iTunes Store’ as showed in figure 8. The attack was
unsuccessful.

Apple FaceTime The Apple FaceTime application didn’t show any login information with sslstrip, but it
didn’t show any error message either. The application was even able to establish a streaming video
connection. However, the attack was still unsuccessful on the application. This is probably caused by
the way Apple FaceTime works. As mentioned in section 4.1 the secure connection is only used for
authentication and not for the data transmission. The application is able to establish a video streaming
connection without authentication, so authentication isn’t mandatory. The attack isn’t successful and
doesn’t show any login information, because the authentication fails and no login information is send.

Dropbox The Dropbox application didn’t show any login information with sslstrip. Instead it showed an error
message saying ’Unable to Connect to Dropbox There may be a problem with your iPhone’s Internet
connection.’ as showed in figure 9. The attack was unsuccessful.

Facebook The Facebook application didn’t show any login information with sslstrip. Instead it showed an
error message saying ’Login Failed Sorry, an unexpected error occurred. Please try again later. (-1200)’
as showed in figure 10. The attack was unsuccessful on this application.

4.2 SSL Strip 14

Figure 6: SSL Strip ABN AMRO error message Figure 7: SSL Strip PayPal error message

Figure 8: SSL Strip Apple App Store error message Figure 9: SSL Strip Dropbox error message

4.3 SSL Proxy 15

Figure 10: SSL Strip Facebook error message

Analysing the captured network traffic showed a SSL handshake failure as showed in figure 11. This failure is
probably caused by the application checking for a secure connection or using mutual authentication between
the server and client. Because sslstrip establishes a secure connection (HTTPS) between the attacker and
server and an insecure connection (HTTP) between the attacker and client, the secure connection can’t be
established and therefore the SSL handshake fails. ABN AMRO Mobiel Bankieren, PayPal, Apple App Store,
Dropbox and Facebook showed a connection error message for the SSL handshake failure. Apple FaceTime
showed no error message and the streaming video connection was established between the two Apple FaceTime
users. Wireshark confirmed this by showing the UDP stream.

Figure 11: SSL handshake failure in Wireshark

4.3 SSL Proxy

For the SSL proxy attack the steps as described in section 2.2.3 were used for each application. Wireshark
was ran simultaneously to see what happened on the network and the captures from each application were
saved. Before each test, all applications on the Apple iPhone 4 were closed to make sure there is no other

4.3 SSL Proxy 16

traffic within the capture. To make sure the attack should work, a HTTPS website was visited after each
application. To analyse the findings the .pcap file was used and the IP address checking and filtering was
done as mentioned in section 4.1.

ABN AMRO Mobiel Bankieren The ABN AMRO Mobiel Bankieren application couldn’t connect to its
server. Instead it showed an error message saying ’Service unavailable ABN AMRO Mobiel Bankieren
is temporarily unavailable. Please try again later.’ as showed in figure 12. The attack was unsuccessful
on this application.

PayPal The PayPal application couldn’t connect to its server. Instead it showed an error message saying
’Error System error. Please try again later.’ as showed earlier with the SSL strip attack in figure 7. The
attack was unsuccessful.

Apple App Store The Apple App Store application couldn’t connect to its server. Instead it showed an error
message saying ’Cannot connect to the Store A secure connection could not be established. Please
check your Date & Time settings.’ as showed in figure 13. The attack was unsuccessful.

Apple FaceTime The Apple FaceTime application couldn’t connect to its server, but it didn’t show any error
message either. The application was again able to establish a streaming video connection. However,
the attack was still unsuccessful on the application. This is caused by the same issue as with the SSL
strip attack mentioned in section 4.1.

Dropbox The Dropbox application couldn’t connect to its server. Instead it showed an error message saying
’Unable to Connect to Dropbox There may be a problem with your iPhone’s Internet connection.’ as
showed earlier with the SSL strip attack in figure 9. The attack was unsuccessful.

Facebook The Facebook application couldn’t connect to its server. Instead it showed an error message
saying ’Login Failed Sorry, an unexpected error occurred. Please try again later. (-1202)’ as showed in
figure 14. The attack was unsuccessful.

Figure 12: SSL Proxy ABN AMRO error message Figure 13: SSL Proxy Apple App Store error message

4.3 SSL Proxy 17

Figure 14: SSL Proxy Facebook error message

Analysing the captured network traffic showed a SSL handshake failure as showed earlier in figure 11. This
failure is caused by the self-signed certificate which isn’t trusted and therefore can’t be used for establishing a
secure connection. The interesting part is that the handshake terminates at the attacker’s computer, because
the self-signed certificate resides there. This is probably the reason why ABN AMRO Mobiel Bankieren,
PayPal, Dropbox and Facebook showed a connection error message. The Apple App Store is the only
application that explicitly said it can’t establish a secure connection. Apple FaceTime again showed no
error message and the streaming video connection was established between the two Apple FaceTime users.
Wireshark confirmed this by showing the UDP stream.

5 Conclusion 18

5 Conclusion

5.1 General

In general this research provided some interesting information about iOS application security. All the applica-
tions use a SSL connection. The online banking applications use TLS 1.x and use a strong cipher suite. The
ABN AMRO Mobiel Bankieren application has the highest level of security, closely followed by the Paypal
application with a high security level. This is expected from banking applications that have your banking
information to do money transfers, although the security level of PayPal was expected to be higher. Apple
FaceTime, Dropbox and Facebook use a weaker cipher suite and have a medium level of security, but provide
enough security for the data they process or store. However, the Apple App Store uses this cipher suite too
and uses your banking information to do money transfers. This is a security risk. An application that uses
banking information should be at least secured with a high security level. This is summarized in table 2 which
shows the expected level of security, the tested level of security as described earlier and the balance between
those two. This shows that two out of six applications lack the security level that they should have according
to the data they process or store.

Application Expected Tested Balance
Security Level Security Level

ABN AMRO Mobiel Bankieren highest highest =
PayPal highest high <
Apple App Store high medium <
Apple FaceTime medium medium =
Dropbox medium medium =
Facebook medium medium =

Table 2: Security levels per application

The applications per security level are shown in figure 15.

Figure 15: Applications per security level

5.2 SSL Decrypt 19

The attacks performed on the applications are summarized in table 3. The conclusion of each attack will be
described in the following sections.

Application SSL Decryption SSL Strip SSL Proxy
ABN AMRO Mobiel Bankieren -1 - -
PayPal -1 - -
Apple App Store -1 - -
Apple FaceTime -1 - -
Dropbox -1 - -
Facebook -1 - -

1 theoretically possible, but not tested

Table 3: SSL attacks per application

5.2 SSL Decrypt

Although the full and actual attack couldn’t be performed, the information that this attack provided showed
the possibility of the attack. All the applications use a RSA key exchange, so a SSL decrypt attack should
succeed. A SSL decrypt attack can provide fully decrypted SSL traffic and could be seriously harmful, when
an attacker has access to your wired network or is in range of your wireless network. On free Wi-Fi networks
this is a serious risk, especially when doing money transfers on such a network.

5.2.1 Prevention

Preventing SSL decrypt attacks can be done from a user, application developer and system administrator
perspective. From a user perspective you should never do private communication on a free Wi-Fi network or
even not use such a network at all. Every telecom provider can offer you an internet connection and those
connections are considered a lot safer then free Wi-Fi networks.

From an application developer perspective two things can be done to protect an application from a SSL
decrypt attack:

protect server’s private key The private key of the server should be protected. A private key in a separate
file is vulnerable for theft and should be set with the right access permissions. Some operating systems
will protect the private key on your behalf by marking them as not exportable. However, the operating
system has to access the key to be able to use it and this is exploitable. Make sure to use the latest
security patches that will fix such exploits and keep your private key safe.

don’t use RSA key exchange The RSA key exchange is susceptible to eavesdropping when the private key
of the server is compromised. The Diffie-Hellman key exchange can be used instead and is by design
resistant to eavesdropping, but can be susceptible to a man-in-the-middle attack. Make sure to choose
the key exchange algorithm wisely and subsidiary to the environment and purpose of the connection.

[33]

From a system administrator perspective the access to the network, both wired and wireless, should be
restricted. Switches should use port security to prevent an attacker from plugging into your network. Wireless
access points should have at least WPA2 security and MAC filtering enabled. Although MAC addresses can
be spoofed and wireless does not have the ability to shutdown ports in a case of violation, these measures
make it a lot harder for an attacker.

5.3 SSL Strip

The test results show that the SSL strip attack isn’t effective on the applications, because they use a connection
that checks for being secure or has mutual authentication. So both sides of the connection have to be trusted
for a connection to be established. This means the security of the applications against a SSL strip attack

5.4 SSL Proxy 20

is sufficient. Although the attack isn’t effective against the applications, a SSL strip attack is considered
seriously harmful. It can provide login information even when using a secure connection, if an attacker has
access to your wired network or is in range of your wireless network. On free Wi-Fi networks this is a high
security risk, especially when doing money transfers on such a network.

5.3.1 Prevention

Preventing SSL strip attacks can be done from a user, application developer and system administrator per-
spective. From a user perspective four things can be done to protect you from a SSL strip attack:

don’t use free Wi-Fi You should never do private communication on a free Wi-Fi network or even not use
such a network at all. Every telecom provider can offer you an internet connection and those connections
are considered a lot safer then free Wi-Fi networks.

check ’https://’ and the certificate You should check whether or not you’re using a HTTPS connection
by looking in the address bar for ’https://’ in front of your URL. Besides that you should also look
for a green field with the certificate. This certificate shows you the company name of the website or
the company name of one of the Certificate Authorities, like VeriSign, Thawte, Geotrust, GoDaddy and
Comodo. If you can’t find both or the application is showing a message saying it can’t verify the identity
of the site, don’t use the site! Be aware of false favo icons (the icon next to the address bar) that show
a lock icon and pretend the connection to be safe.

use StripGuard StripGuard is a free mobile application for Android and iOS devices by ACIS Professional
Center. ACIS Professional Center is a Thai IT security company. The application checks a connection
for still using HTTPS. If it is, the network is safe and the user could use it (but be aware of the things
pointed out earlier). If it isn’t, a hacker is active on that network and the user should avoid it. This
application has been used in this research and works really well. [34] [35]

use HTTPS Everywhere HTTPS Everywhere is a free browser plugin for Google Chrome and Mozilla Firefox
by the Electronic Frontier Foundation and The TOR Project. The Electronic Frontier Foundation and
The TOR Project are organizations that fight for a free and anonymous internet. The application
rewrites all requests from the browser to HTTPS, so a HTTPS connection can’t drop back to HTTP.
[36]

From an application developer perspective an application should check the connection for being secure or use
mutual authentication to make sure both sides of the connection can be trusted and no one can eavesdrop
in the middle. Make sure that authentication is mandatory for any live streaming connection to establish,
otherwise it is established anyway (like with Apple FaceTime).

From a system administrator perspective the measures mentioned in section 5.2.1 should be taken.

5.4 SSL Proxy

The test results show that the SSL proxy attack isn’t effective on the applications, because they don’t trust
the self-signed certificate. This means the security of the applications against a SSL strip attack is sufficient.
The SSL proxy attack is considered less harmful then a SSL strip attack, because most applications including
web browsers will show a certificate warning. However, it can still provide login information, when a user
decides to manually continue with the untrusted certificate. On free Wi-Fi networks this is a security risk,
especially when doing money transfers on such a network.

5.4.1 Prevention

Preventing SSL proxy attacks can be done from a user, application developer and system administrator
perspective. From a user perspective two things can be done to protect you from a SSL strip attack:

don’t use free Wi-Fi You should never do private communication on a free Wi-Fi network or even not use
such a network at all. Every telecom provider can offer you an internet connection and those connections
are considered a lot safer then free Wi-Fi networks.

5.5 Achievements 21

check the certificate You should check whether or not you’re using a trusted certificate. This can be done
by looking for the green field with the certificate. This shows you the company name of the website
or the company name of one of the Certificate Authorities. If you can’t find this or the application is
showing a message saying it can’t verify the identity of the site, don’t use the site! Be aware of false
favo icons (the icon next to the address bar) that show a lock icon and pretend the connection to be
safe.

From an application developer perspective the measures mentioned in section 5.3.1 should be taken.

From a system administrator perspective again the measures mentioned in section 5.2.1 should be taken.

5.5 Achievements

With this research project some important things are achieved:

• defined a simple security level system for application using secure connections
• showed six popular iOS applications that aren’t vulnerable to a SSL strip or proxy attack
• showed prevention solutions for the SSL attacks
• set a basis for further research

5.6 Future research

Other applications Looking at the Apple App Store, there are so many different applications that use client-
server architecture. These applications all have different security levels that will fit in one of the security
levels described in section 3.1. With so many applications available more research can be done on these
other applications.

Extracting RSA private key What may complete the SSL decrypt attack, is trying to extract the RSA
private key from the server. It should be impossible to get this from the servers of the tested applications,
especially ABN AMRO Mobiel Bankieren and PayPal. However, the private key may be found and
extracted from the client. So browsing or carving the physical image of the Apple iPhone 4, may
provide the information needed for a successful SSL decrypt attack.

Trusting self-signed certificate This research showed that some applications do not trust the self-signed
certificate and therefore can’t establish the secure connection. If the self-signed certificate is to be
trusted by the Apple iPhone 4, then the application should trust the certificate as well and the SSL
proxy attack could eventually be successful. There is a YouTube video on this involving Twitter [37].

Developing own application Another way to capture the secure traffic is by creating some kind of malware
application for the Apple iPhone that sits between the application and network stack, captures the data
and sends it to the attacker’s computer or server. In order to do this the iPhone needs to be rooted
or so called jailbroken. Developing such an application will be interesting from both an ethical hacking
and anti-malware developing perspective.

REFERENCES 22

References

[1] Wikipedia: App Store (iOS), http://en.wikipedia.org/wiki/App_Store_(iOS).

[2] RFC 6101: The Secure Sockets Layer (SSL) Protocol Version 3.0, http://tools.ietf.org/html/

rfc6101/, 2011.

[3] RFC 2246: The TLS Protocol Version 1.0, http://tools.ietf.org/html/rfc2246/, 1999.

[4] RFC 4346: The Transport Layer Security (TLS) Protocol Version 1.1, http://tools.ietf.org/html/
rfc4346/, 2006.

[5] RFC 5246: The Transport Layer Security (TLS) Protocol Version 1.2, http://tools.ietf.org/html/
rfc5246/, 2008.

[6] RFC 6176: Prohibiting Secure Sockets Layer (SSL) Version 2.0, http://tools.ietf.org/html/

rfc6176/, 2011.

[7] Wikipedia: Transport Layer Security, http://en.wikipedia.org/wiki/Transport_Layer_Security.

[8] The Tor Blog: Tor and the BEAST SSL attack, https://blog.torproject.org/blog/

tor-and-beast-ssl-attack/, 2011.

[9] Wireshark, http://www.wireshark.org.

[10] The Wireshark Wiki: SSL, http://wiki.wireshark.org/SSL/, 2012.

[11] Citrix: How to decrypt SSL and TLS traffic using Wireshark, http://support.citrix.com/article/
CTX116557/, 2008.

[12] sslstrip, http://www.thoughtcrime.org/software/sslstrip/.

[13] dsniff, http://www.monkey.org/~dugsong/dsniff/.

[14] Jeff Beard-Shouse’s blog: An introduction to SSL Strip and building a better browser, http:

//clarkehackworth.com/content/introduction-ssl-strip-and-building-better-browser/,
2010.

[15] Vishnu Valentino Ethical Hacking Tutorial, Security Tips and Trick: Break SSL Pro-
tection Using SSLStrip and Backtrack 5, http://vishnuvalentino.com/computer/

break-ssl-protection-using-sslstrip-and-backtrack-5/, 2011.

[16] YouTube: SSL Strip, http://www.youtube.com/watch?v=XtaAuhQWvcg, 2009.

[17] sslstrip, http://www.thoughtcrime.org/software/sslstrip/.

[18] Burp Suite, http://portswigger.net/burp/.

[19] 41J Blog: SecurityTube, Wireless Lan Security Megaprimer notes part 13
- SSL Man-In-The-Middle Attacks, http://vishnuvalentino.com/computer/

break-ssl-protection-using-sslstrip-and-backtrack-5/, 2011.

[20] YouTube: Wireless LAN Security Part 13 - SSL Man-In-The-Middle Attacks, http://www.youtube.
com/watch?v=aBOqdZXfujk, 2012.

[21] Peter Burkholder, SSL Man-in-the-Middle Attacks, 2002.

[22] Kristof Boeynaems, Man-in-the-Middle aanval op het SSL protocol, 2004.

[23] Brice Canvel, Alain Hiltgen, Serge Vaudenay and Martin Vuagnoux, Password Interception in a SSL/TLS
Channel, 2003.

[24] David Brumley and Dan Boneh, Remote timing attacks are practical, 2003.

LIST OF FIGURES 23

[25] Onur Aciicmez, Werner Schindler and Cetin Koc, Improving Brumley and Boneh Timing Attack on
Unprotected SSL Implementations, 2005.

[26] CNSS Policy No. 15 Fact Sheet No. 1: National Policy on the Use of the Advanced Encryption Standard
(AES) to Protect National Security Systems and National Security Information, http://csrc.nist.

gov/groups/ST/toolkit/documents/aes/CNSS15FS.pdf, 2003.

[27] Wikipedia: Triple DES, http://en.wikipedia.org/wiki/Triple_DES.

[28] Wikipedia: RC4, http://en.wikipedia.org/wiki/Rc4.

[29] Wikipedia: Data Encryption Standard http://en.wikipedia.org/wiki/Data_Encryption_

Standard.

[30] BackTrack Linux, http://www.backtrack-linux.org.

[31] RFC 3268: Advanced Encryption Standard (AES) Ciphersuites for Transport Layer Security (TLS),
http://tools.ietf.org/html/rfc3268/, 2008.

[32] Akamai Technologies, http://www.akamai.com.

[33] wirewatcher: Decrypting SSL traffic with Wireshark and ways
to prevent it, http://wirewatcher.wordpress.com/2010/07/20/

decrypting-ssl-traffic-with-wireshark-and-ways-to-prevent-it/, 2010.

[34] Google Play: StripGuard, https://play.google.com/store/apps/details?id=com.acis.

[35] Apple App Store: StripGuard, http://itunes.apple.com/us/app/sslstripguard/id510891106?

mt=8.

[36] HTTPS Everywhere, https://www.eff.org/https-everywhere/.

[37] YouTube: iPhone Penetration Testing - Man-in-the-Middle of iphone https traffic, http://www.

youtube.com/watch?v=q6ShMaUba5Y, 2012.

List of Figures

1 SSL Server-side Certificate Authentication . 3
2 SSL Mutual Certificate Authentication . 4
3 SSL Strip attack . 6
4 SSL Proxy attack . 7
5 Security levels . 9
6 SSL Strip ABN AMRO error message . 14
7 SSL Strip PayPal error message . 14
8 SSL Strip Apple App Store error message . 14
9 SSL Strip Dropbox error message . 14
10 SSL Strip Facebook error message . 15
11 SSL handshake failure in Wireshark . 15
12 SSL Proxy ABN AMRO error message . 16
13 SSL Proxy Apple App Store error message . 16
14 SSL Proxy Facebook error message . 17
15 Applications per security level . 18

List of Tables

1 SSL connection information per application . 13
2 Security levels per application . 18
3 SSL attacks per application . 19

